MANET(Mobile Ad Hoc Network) Definition and Application

wireless ad hoc network(WANET) or Mobile ad hoc network (MANET)
               


 Definition:


wireless ad hoc network(WANET) or Mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers in wired networks or access points in managed (infrastructure) wireless networks. Instead, each node participates in routing by forwarding data for other nodes, so the determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.

In the Windows operating system, ad-hoc is a communication mode (setting) that allows computers to directly communicate with each other without a router. Wireless mobile ad hoc networks are self-configuring, dynamic networks in which nodes are free to move.






Such wireless networks lack the complexities of infrastructure setup and administration, enabling devices to create and join networks "on the fly" – anywhere, anytime.
Each device in a MANET is free to move independently in any direction, and will therefore change its links to other devices frequently. Each must forward traffic unrelated to its own use, and therefore be a router. The primary challenge in building a MANET is equipping each device to continuously maintain the information required to properly route traffic. Such networks may operate by themselves or may be connected to the larger Internet. They may contain one or multiple and different transceivers between nodes. This results in a highly dynamic, autonomous topology.

MANETs usually have a routable networking environment on top of a Link Layer ad hoc network. MANETs consist of a peer-to-peer, self-forming, self-healing network. MANETs circa 2000–2015 typically communicate at radio frequencies (30 MHz – 5 GHz).












Applications

The decentralized nature of wireless ad-hoc networks makes them suitable for a variety of applications where central nodes can't be relied on and may improve the scalability of networks compared to wireless managed networks, though theoretical and practical limits to the overall capacity of such networks have been identified. Minimal configuration and quick deployment make ad hoc networks suitable for emergency situations like natural disasters or military conflicts. The presence of dynamic and adaptive routing protocols enables ad hoc networks to be formed quickly.

 Wireless ad-hoc networks can be further classified by their applications:


Mobile ad hoc networks (MANETs)

A mobile ad hoc network (MANET) is a continuously self-configuring, self-organizing, infrastructure-less network of mobile devices connected without wires. It is sometimes known as "on-the-fly" networks or "spontaneous networks".


Vehicular ad hoc networks (VANETs)

VANETs are used for communication between vehicles and roadside equipment. Intelligent vehicular ad hoc networks (InVANETs) are a kind of artificial intelligence that helps vehicles to behave in intelligent manners during vehicle-to-vehicle collisions, accidents. Vehicles are using radio waves to communicate with each other, creating communication networks instantly on-the-fly while vehicles move along roads.


Smartphone ad hoc networks (SPANs)

A SPAN leverages existing hardware (primarily Wi-Fi and Bluetooth) and software (protocols) in commercially available smartphones to create peer-to-peer networks without relying on cellular carrier networks, wireless access points, or traditional network infrastructure. SPANs differ from traditional hub and spoke networks, such as Wi-Fi Direct, in that they support multi-hop relays and there is no notion of a group leader so peers can join and leave at will without destroying the network. Most recently, Apple's iPhone with version 8.4 iOS and higher have been enabled with multi-peer ad hoc mesh networking capability,  in iPhones, allowing millions of smart phones to create ad hoc networks without relying on cellular communications. It has been claimed that this is going to "change the world".


iMANETs

Internet-based mobile ad-hoc networks (iMANETs) is a type of wireless ad hoc network that supports Internet protocols such as TCP/UDP and IP. The network uses a network-layer routing protocol to link mobile nodes and establish routes distributedly and automatically.


Wireless mesh networks

Mesh networks take their name from the topology of the resultant network. In a fully connected mesh, each node is connected to every other node, forming a "mesh". A partial mesh, by contrast, has a topology in which some nodes are not connected to others, although this term is seldom in use. Wireless ad hoc networks can take the form of a mesh networks or others. A wireless ad hoc network does not have fixed topology, and its connectivity among nodes is totally dependent on the behavior of the devices, their mobility patterns, distance with each other, etc. Hence, wireless mesh networks are a particular type of wireless ad hoc networks, with special emphasis on the resultant network topology. While some wireless mesh networks (particularly those within a home) have relatively infrequent mobility and thus infrequent link breaks, other more mobile mesh networks require frequent routing adjustments to account for lost links. Google Home, Google Wi-Fi, and Google OnHub all support Wi-Fi mesh (i.e., Wi-Fi ad hoc) networking.Apple's AirPort allows the formation of wireless mesh networks at home, connecting various Wi-Fi devices together and providing good wireless coverage and connectivity at home.


Army tactical MANETs

Military or tactical MANETs are used by military units with emphasis on data rate, real-time requirement, fast re-routing during mobility, data security, radio range, and integration with existing systems.  Common radio waveforms include the US Army's JTRS SRW and Persistent System's WaveRelay. Ad hoc mobile communications come in well to fulfill this need, especially its infrastructureless nature, fast deployment and operation. Military MANETs are used by military units with emphasis on rapid deployment, infrastructureless, all-wireless networks (no fixed radio towers), robustness (link breaks are no problem), security, range, and instant operation. MANETs can be used in army "hopping" mines, in platoons where soldiers communicate in foreign terrains, giving them superiority in the battlefield. Tactical MANETs can be formed automatically during the mission and the network "disappears" when the mission is over or decommissioned. It is sometimes called "on-the-fly" wireless tactical network.


Air Force UAV Ad hoc networks

Flying ad hoc networks (FANETs) are composed of unmanned aerial vehicles, allowing great mobility and providing connectivity to remote areas.
Unmanned aerial vehicle, is an aircraft with no pilot on board. UAVs can be remotely controlled (i.e., flown by a pilot at a ground control station) or can fly autonomously based on pre-programmed flight plans. Civilian usage of UAV include modeling 3D terrains, package delivery (Amazon), etc.
UAVs have also been used by US Air Force for data collection and situation sensing, without risking the pilot in a foreign unfriendly environment. With wireless ad hoc network technology embedded into the UAVs, multiple UAVs can communicate with each other and work as a team, collaboratively to complete a task and mission. If a UAV is destroyed by an enemy, its data can be quickly offloaded wirelessly to other neighboring UAVs. The UAV ad hoc communication network is also sometimes referred to UAV instant sky network.


Navy ad hoc networks

Navy ships traditionally use satellite communications and other maritime radios to communicate with each other or with ground station back on land. However, such communications are restricted by delays and limited bandwidth. Wireless ad hoc networks enable ship-area-networks to be formed while at sea, enabling high speed wireless communications among ships, enhancing their sharing of imaging and multimedia data, and better co-ordination in battlefield operations.Some defense companies (such as Rockwell Collins and Rohde & Schwartz) have produced products that enhance ship-to-ship and ship-to-shore communications.


Wireless sensor networks

Sensors are useful devices that collect information related to a specific parameter, such as noise, temperature, humidity, pressure, etc. Sensors are increasingly connected via wireless to allow large scale collection of sensor data. With a large sample of sensor data, analytics processing can be used to make sense out of these data. The connectivity of wireless sensor networks rely on the principles behind wireless ad hoc networks, since sensors can now be deploy without any fixed radio towers, and they can now form networks on-the-fly. "Smart Dust" was one of the early projects done at U C Berkeley, where tiny radios were used to interconnect smart dust.  More recently, mobile wireless sensor networks (MWSNs) have also become an area of academic interest.


Ad hoc home smart lighting

ZigBee is a low power form of wireless ad hoc networks that is now finding their way in home automation. Its low power consumption, robustness and extended range inherent in mesh networking can deliver several advantages for smart lighting in homes and in offices. The control includes adjusting dimmable lights, color lights, and color or scene. The networks allow a set or subset of lights to be controlled over a smart phone or via a computer. The home automation market is tipped to exceed $16 billion by 2019.


Ad hoc street light networks

Wireless ad hoc smart street light networks are beginning to evolve. The concept is to use wireless control of city street lights for better energy efficiency, as part of a smart city architectural feature. Multiple street lights form a wireless ad hoc network. A single gateway device can control up to 500 street lights. Using the gateway device, one can turn individual lights ON, OFF or dim them, as well as find out which individual light is faulty and in need of maintenance.


Ad hoc network of robots

Robots are mechanical systems that drive automation and perform chores that would seem difficult for man. Efforts have been made to co-ordinate and control a group of robots to undertake collaborative work to complete a task. Centralized control is often based on a "star" approach, where robots take turns to talk to the controller station. However, with wireless ad hoc networks, robots can form a communication network on-the-fly, i.e., robots can now "talk" to each other and collaborate in a distributed fashion.With a network of robots, the robots can communicate among themselves, share local information, and distributively decide how to resolve a task in the most effective and efficient way.

Hospital ad hoc network

Wireless ad hoc networks allow sensors, videos, instruments, and other devices to be deployed and interconnected wirelessly for clinic and hospital patient monitoring, doctor and nurses alert notification, and also making senses of such data quickly at fusion points, so that lives can be saved.


Data monitoring and mining

MANETS can be used for facilitating the collection of sensor data for data mining for a variety of applications such as air pollution monitoring and different types of architectures can be used for such applications.A key characteristic of such applications is that nearby sensor nodes monitoring an environmental feature typically register similar values. This kind of data redundancy due to the spatial correlation between sensor observations inspires the techniques for in-network data aggregation and mining. By measuring the spatial correlation between data sampled by different sensors, a wide class of specialized algorithms can be developed to develop more efficient spatial data mining algorithms as well as more efficient routing strategies. Also, researchers have developed performance models for MANET to apply queueing theory.





















Recommended posts:-




Previous
Next Post »

If you have any doubts. Please let me know ConversionConversion EmoticonEmoticon